4.4 Article

QTL analysis of flooding tolerance in soybean at an early vegetative growth stage

Journal

PLANT BREEDING
Volume 125, Issue 6, Pages 613-618

Publisher

WILEY
DOI: 10.1111/j.1439-0523.2006.01291.x

Keywords

Glycine max; flooding tolerance; DNA marker; quantitative trait loci analysis

Ask authors/readers for more resources

Soybean cultivars are sensitive to flooding stress and their seed yields are substantially reduced in response to the stress. This study was conducted to investigate the genetic basis of flooding tolerance at an early vegetative growth stage. Sixty recombinant inbred lines derived from a cross between a relatively tolerant cv. 'Misuzudaizu' and a sensitive cv. 'Moshidou Gong 503' were grown in pots in a vinyl plastic greenhouse in 2002 and 2003. At the two-leaf stage, half of the pots were waterlogged by water placed in plastic containers and adjusted to 5 cm above the soil Surface. After 3 weeks of treatment, the pots were returned to the greenhouse and grown until maturity. Flooding tolerance was evaluated by dividing the seed weight of the treated plants by that of the control plants. Quantitative trait loci (QTL) analysis using 360 genetic markers revealed three QTLs for flooding tolerance, ft1 to ft3 in 2002. The ft1 (molecular linkage group C2) was reproducible and an additional four QTLs, ft4 to ft7, were found in 2003. The fi1 had a high LOD score in both years (15.41 and 7.57) and accounted for 49.2% and 30.5% of the total variance, respectively. A large QTL for days to flowering was consistently observed across treatments and years at a similar position to ft1. Comparing the relative location with markers, the maturity gene probably corresponds to El. Late maturity may have conferred a longer growth period for recovery from flooding stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available