4.2 Article

Evaluation of prenatal RHD typing strategies on cell-free fetal DNA from maternal plasma

Journal

TRANSFUSION
Volume 46, Issue 12, Pages 2142-2148

Publisher

WILEY
DOI: 10.1111/j.1537-2995.2006.01044.x

Keywords

-

Categories

Ask authors/readers for more resources

BACKGROUND: The discovery of cell-free fetal DNA in maternal plasma led to the development of assays to predict the fetal D status with RHD-specific sequences. Few assays are designed in such a way that the fetus can be typed in RHD psi mothers and that RHD psi fetuses are correctly typed. Owing to the limited knowledge about the mechanism responsible for the presence of fetal DNA in maternal plasma, precautions in developing prenatal genotyping strategies must be made. STUDY DESIGN AND METHODS: Real-time quantitative (RQ)-polymerase chain reaction (PCR) assays were developed for prenatal diagnostic use with cell-free fetal DNA from maternal plasma. An RQ-PCR assay on RHD exon 5 (amplicon 361 bp), negative on RHD psi, was developed with genomic DNA and evaluated with cell-free fetal DNA. A previously published RHD exon 5 RQ-PCR (amplicon 82 bp) was duplexed with an in-house developed RHD exon 7 RQ-PCR and evaluated with cell-free fetal DNA from pregnant D- RHD psi+ women. RESULTS: The RHD exon 5 361 bp assay showed on cell-free plasma DNA from D- women carrying a D+ fetus, low amplification levels, resulting in high Ct values and false-negative results. Owing to fragmentation of cell-free plasma DNA, too few DNA stretches of sufficient length (> 360 bp) are present. The RHD exon 5 82 bp and exon 7 RQ-PCR duplex was evaluated with RHD psi+ cell-free plasma DNA and showed complete specificity and maximal sensitivity. CONCLUSION: Assays designed for prenatal genotyping should be developed and evaluated on cell-free plasma DNA. Prenatal RHD typing is accurate with the RHD exon 5 82 bp and exon 7 duplex strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available