4.6 Article

Inhibition of tRNALys3-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replicationv

Journal

JOURNAL OF VIROLOGY
Volume 80, Issue 23, Pages 11710-11722

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01038-06

Keywords

-

Categories

Ask authors/readers for more resources

Cells are categorized as being permissive or nonpermissive according to their ability to produce infectious human immunodeficiency virus type 1 (HIV-1) lacking the viral protein Vif. Nonpermissive cells express the human cytidine deaminase APOBEC3G (hA3G), and Vif has been shown to bind to APOBEC3G and facilitate its degradation. Vif-negative HIV-1 virions produced in nonpermissive cells incorporate hA3G and have a severely reduced ability to produce viral DNA in newly infected cells. While it has been proposed that the reduction in DNA production is due to hA3G-facilitated deamination of cytidine, followed by DNA degradation, we provide evidence here that a decrease in the synthesis of the DNA by reverse transcriptase may account for a significant part of this reduction. During the infection of cells with Vif-negative HIV-1 produced from 293T cells transiently expressing hA3G, much of the inhibition of early (>= 50% reduction) and late (>= 95% reduction) viral DNA production, and of viral infectivity (>= 95% reduction), can occur independently of DNA deamination. The inhibition of the production of early minus-sense strong stop DNA is also correlated with a similar inability of tRNA(3)(Lys) to prime reverse transcription. A similar reduction in tRNA(3)(Lys) priming and viral infectivity is also seen in the naturally nonpermissive cell 119, albeit at significantly lower levels of hA3G expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available