4.8 Article

Strongly interacting polaritons in coupled arrays of cavities

Journal

NATURE PHYSICS
Volume 2, Issue 12, Pages 849-855

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys462

Keywords

-

Ask authors/readers for more resources

Observing quantum phenomena in strongly correlated many-particle systems is difficult because of the short length- and timescales involved. Exerting control over the state of individual elements within such a system is even more so, and represents a hurdle in the realization of quantum computing devices. Substantial progress has been achieved with arrays of Josephson junctions and cold atoms in optical lattices, where detailed control over collective properties is feasible, but addressing individual sites remains a challenge. Here we show that a system of polaritons held in an array of resonant optical cavities which could be realized using photonic crystals or toroidal microresonators - can form a strongly interacting many-body system showing quantum phase transitions, where individual particles can be controlled and measured. The system also offers the possibility to generate attractive onsite potentials yielding highly entangled states and a phase with particles much more delocalized than in superfluids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available