4.2 Article

Iron oxide enhanced chlorine decay and disinfection by-product formation

Journal

JOURNAL OF ENVIRONMENTAL ENGINEERING
Volume 132, Issue 12, Pages 1609-1616

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9372(2006)132:12(1609)

Keywords

halogen organic compounds; water distribution systems; disinfection; chlorine; iron

Ask authors/readers for more resources

This study investigates the interaction of natural organic matter with iron oxide (goethite) on chlorine decay, disinfection by-product (DBP) formation, and DBP compound speciation [total trihalomethanes (TTHM4) and haloacetic acids (HAA5)]. Batch experiments were conducted with goethite, multiple finished drinking waters, variable chlorine dose, and fixed pH 8. The overall objective was to assess natural organic matter (NOM) adsorption onto goethite and its effect on chlorine decay and DBP formation. Chlorine consumption always increased in the presence of goethite and is attributed to an increase in the reactivity and/or modification of adsorbed NOM. Adsorbed NOM also led to an overall increase in TTHM4, however, HAA5 formation was suppressed during the first 2 h. Chloroform was identified as the increasing species and dichloracetic acid was identified as the suppressed species. This study clearly shows that goethite, which is the predominant iron oxide of pipe deposits, alters both chlorine decay and DBP formation and should be considered when assessing water treatment plant operations and DBP monitoring site selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available