4.4 Article

Knee extensor muscle oxygen consumption in relation to muscle activation

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 98, Issue 6, Pages 535-545

Publisher

SPRINGER
DOI: 10.1007/s00421-006-0298-2

Keywords

activation; muscle length; muscle oxygen consumption

Ask authors/readers for more resources

Recently, fatigability and muscle oxygen consumption (mVO(2)) during sustained isometric contractions were found to be less at shorter (30 degrees knee angle; 0 degrees = full extension) compared to longer knee extensor muscle lengths (90 degrees) and, at low torques, less in the rectus femoris (RF) muscle than in the vastus lateralis and medialis. In the present study we hypothesized that these findings could be accounted for by a knee angle- and a muscle-dependent activation respectively. On two experimental days rectified surface EMG (rsEMG) was obtained as a measure of muscle activation in nine healthy young males. In addition, on day 1 maximal torque capacity (MTC) was carefully determined using superimposed nerve stimulation on brief high intensity contractions (> 70%MVC) at 30, 60 and 90 degrees knee angles. On day 2, subjects performed longer lasting isometric contractions (10-70%MTC) while mVO(2) was measured using near-infrared spectroscopy (NIRS). At 30 degrees, maximal mVO(2) was reached significantly later (11.0 s +/- 6.5 s) and was 57.9 +/- 8.3% less (average +/- SD, across intensities and muscles) than mVO(2) at 60 and 90 degrees (p < 0.05). However, rsEMG was on average only 18.0 +/- 11.8% (p = 0.062) less at the start of the contraction at 30 degrees. At 10%MTC at all knee angles, maximal mVO(2) of the RF occurred significantly later (28.8 +/- 36.0 s) and showed a significantly smaller increase in rsEMG compared to both vasti. In conclusion, it is unlikely that the tendency for less intense muscle activation could fully account for the similar to 60% lower oxygen consumption at 30 degrees, but the later increase in RFmVO2 seemed to be caused by a less strong activation of the RF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available