4.5 Article

Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 26, Issue 24, Pages 9196-9208

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00945-06

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Tristetraprolin (TTP) is a tandem CCCH zinc finger protein that was identified through its rapid induction by mitogens in fibroblasts. Studies of TTP-deficient mice and cells derived from them showed that TTP could bind to certain AU-rich elements in mRNAs, leading to increases in the rates of mRNA deadenylation and destruction. Known physiological target mRNAs for TTP include tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and interieukin-2 beta. Here we used microarray analysis of RNA from wild-type and TTP-deficient fibroblast cell lines to identify transcripts with different decay rates, after serum stimulation and actinomycin D treatment. Of 250 mRNAs apparently stabilized in the absence of TTP, 23 contained two or more conserved TTP binding sites; nine of these appeared to be stabilized on Northern blots. The most dramatically affected transcript encoded the protein Ier3, recently implicated in the physiological control of blood pressure. The Ier3 transcript contained several conserved TTP binding sites that could bind TTP directly and conferred TTP sensitivity to the mRNA in cell transfection studies. These studies have identified several new, physiologically relevant TTP target transcripts in fibroblasts; these target mRNAs encode proteins from a variety of functional classes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available