4.6 Article

Comparison of endothelial function, O(2)over-bar• and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00534.2006

Keywords

senescence; comparative biology; vascular disease; atherosclerosis

Funding

  1. NHLBI NIH HHS [HL-077256] Funding Source: Medline
  2. NIA NIH HHS [AG-022891] Funding Source: Medline
  3. NIGMS NIH HHS [S06-GM08168] Funding Source: Medline

Ask authors/readers for more resources

Vascular aging is characterized by decreased nitric oxide (NO) bioavailability, oxidative stress, and enhanced apoptotic cell death. We hypothesized that interspecies comparative assesment of vascular function among rodents with disparate longevity may offer insight into the mechanisms determining successful vascular aging. We focused on four rodents that show approximately an order of magnitude range in maximum longevity (ML). The naked mole rat (NMR; Heterocephalus glaber) is the longest-living rodent known (ML > 28 yr), Damara mole rats (DMRs, Cryptomys damarensis; ML similar to 16 yr) and guinea pigs (GPs, Cavia porcellus; ML similar to 6 yr) have intermediate longevity, whereas laboratory mice are short living (ML similar to 3.5 yr). We compared interspecies differences in endothelial function, O-2(-). and H2O2 production, and resistance to apoptotic stimuli in blood vessels. Sensitivity to acetylcholine-induced, NO-mediated relaxation was smaller in carotid arteries from NMRs, GPs, and DMRs than in mouse vessels. Measurements of production of O-2(-). (lucigenin chemiluminescence and ethidium bromide fluorescence) and H2O2 ( dichlorofluorescein fluorescence) showed that free radical production in vascular endothelial and smooth muscle cells is comparable in vessels of the three longer-living species and in arteries of shorter-living mice. In mouse arteries, H2O2 (from 10(-6) to 10(-3) mol/l) and heat exposure (42 degrees C for 15-45 min) enhanced apoptotic cell death, as indicated by an increased DNA fragmentation rate and increased caspase 3/7 activity. In NMR vessels, only the highest doses of H2O2 enhanced apoptotic cell death, whereas heat exposure did not increase DNA fragmentation rate. Interspecies comparison showed there is a negative correlation between H2O2-induced apoptotic cell death and ML. Thus endothelial vasodilator function and vascular production of reactive oxygen species do not correlate with maximal lifespan, whereas increased lifespan potential is associated with an increased vascular resistance to proapoptotic stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available