4.6 Article

ermK leader peptide :: Amino acid sequence critical for induction by erythromycin

Journal

ARCHIVES OF PHARMACAL RESEARCH
Volume 29, Issue 12, Pages 1154-1157

Publisher

PHARMACEUTICAL SOCIETY KOREA
DOI: 10.1007/BF02969307

Keywords

ermK leader peptide; induction; ribosome stalling; transcriptional and translational attenuation

Ask authors/readers for more resources

The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E coli beta-galactosidase reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not, The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available