4.4 Article Proceedings Paper

Thermo-hydro-mechanical modeling of CO2 sequestration system around fault environment

Journal

PURE AND APPLIED GEOPHYSICS
Volume 163, Issue 11-12, Pages 2585-2593

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00024-006-0141-z

Keywords

sequestration; greenhouse gas; fault; thermo-hydro-mechanical modeling; Drucker-Prager model; cap model

Ask authors/readers for more resources

Geological sequestration of CO2 (carbon dioxide) shows great potential to reduce Greenhouse gas emissions. However, CO2 injection into geological formations may give rise to a variety of coupled chemical and physical processes. The thermo-hydro-mechanical (THM) impact of CO2 injection can induce fault instability, even possibly lead to seismic activities in and around the disposal reservoir. A sequential coupling approach under some assumptions was proposed in the numerical study to investigate the THM behavior of the CO2 sequestration system concerning the temperature, initial geological stress, injection pressure and CO2 buoyancy. The fault was treated as a flexible contact model. The effects of CO2 injection on the mechanical behavior of the faults were investigated. The Drucker-Prager model and the cap model were used to model the constitutive relationship of formations. The numerical results show that injection pressure sensitively affects the relative slip change of the fault. At the initial stage of the sequestration process, the injection pressure plays a key role in affecting the pore pressure of the formations. However, as time continues, the influence of CO2-induced buoyancy becomes obvious on the pore pressure of the formations. In general, The THM effects of CO2 geosequestration do not affect the mechanical stability of formations and faults.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available