4.7 Article

Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways

Journal

PLANTA
Volume 225, Issue 1, Pages 153-164

Publisher

SPRINGER
DOI: 10.1007/s00425-006-0337-6

Keywords

seeds; storage; metabolite profiling; carbon metabolism; oil; starch; Arabidopsis thaliana

Categories

Ask authors/readers for more resources

The biosynthesis of seed oil and starch both depend on the supply of carbon from the maternal plant. The biochemical interactions between these two pathways are not fully understood. In the Arabidopsis mutant shrunken seed 1 (sse1)/pex16, a reduced rate of fatty acid synthesis leads to starch accumulation. To further understand the metabolic impact of the decrease in oil synthesis, we compared soluble metabolites in sse1 and wild type (WT) seeds. Sugars, sugar phosphates, alcohols, pyruvate, and many other organic acids accumulated in sse1 seeds as a likely consequence of the reduced carbon demand for lipid synthesis. The enlarged pool size of hexose-P, the metabolites at the crossroad of sugar metabolism, glycolysis, and starch synthesis, was likely a direct cause of the increased flow into starch. Downstream of glycolysis, more carbon entered the TCA cycle as an alternative to the fatty acid pathway, causing the total amount of TCA cycle intermediates to rise while moving the steady state of the cycle away from fumarate. To convert the excess carbon metabolites into starch, we introduced the Escherichia coli starch synthetic enzyme ADP-glucose pyrophosphorylase (AGPase) into sse1 seeds. Expression of AGPase enhanced net starch biosynthesis in the mutant, resulting in starch levels that reached 37% of seed weight. However, further increases above this level were not achieved and most of the carbon intermediates remained high in comparison with the WT, indicating that additional mechanisms limit starch deposition in A rabidopsis seeds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available