4.4 Article

Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection

Journal

INFECTION AND IMMUNITY
Volume 74, Issue 12, Pages 6665-6674

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.00949-06

Keywords

-

Funding

  1. FIC NIH HHS [D43 TW007129, 1D43 TW 007129] Funding Source: Medline

Ask authors/readers for more resources

A number of studies have shown an association of pathogens with caveolae. To this date, however, there are no studies showing a role for caveolin-1 in modulating immune responses against pathogens. Interestingly, expression of caveolin-1 has been shown to occur in a regulated manner in immune cells in response to lipopolysaccharide (LPS). Here, we sought to determine the role of caveolin-1 (Cav-1) expression in Salmonella pathogenesis. Cav-1(-/-) mice displayed a significant decrease in survival when challenged with Salmonella enterica serovar Typhimurium. Spleen and tissue burdens were significantly higher in Cav-1(-/-) mice. However, infection of Cav-1(-/-) macrophages with serovar Typhimurium did not result in differences in bacterial invasion. In addition, Cav-1(-/-) mice displayed increased production of inflammatory cytokines, chemokines, and nitric oxide. Regardless of this, Cav-1(-/-) mice were unable to control the systemic infection of Salmonella. The increased chemokine production in Cav-1(-/-) mice resulted in greater infiltration of neutrophills into granulomas but did not alter the number of granulomas present. This was accompanied by increased necrosis in the liver. However, Cav-1(-/-) macrophages displayed increased inflammatory responses and increased nitric oxide production in vitro in response to Salmonella LPS. These results show that caveolin-1 plays a key role in regulating anti-inflammatory responses in macrophages. Taken together, these data suggest that the increased production of toxic mediators from macrophages lacking caveolin-1 is likely to be responsible for the marked susceptibility of caveolin-I-deficient mice to S. enterica serovar Typhimurium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available