4.6 Article

Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice

Journal

ATHEROSCLEROSIS
Volume 189, Issue 2, Pages 264-272

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.atherosclerosis.2005.12.029

Keywords

serine palmitoyltransferase; sphingolipid; cholesterol; lipoprotein; SREBP; atherosclerosis

Ask authors/readers for more resources

Plasma sphingomyelin (SM) has been suggested as a risk factor for coronary heart disease independent of cholesterol levels. A decrease of SM in lipoproteins is known to improve the activities of lecithin:cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) in vitro. Inhibition of SM biosynthesis may reduce lipoprotein SM content and thus improve cholesterol distribution in lipoproteins by enhancing reverse cholesterol transport and clearance of triglyceride-rich lipoproteins. To examine this hypothesis, ApoE KO mice were fed a western diet and treated for 4 weeks with various concentrations of myriocin, a specific inhibitor of serine palmitoyltransferase. Myriocin treatment lowered plasma cholesterol and TG levels in a dose-dependent manner. In addition, myriocin treatment reduced cholesterol contents in VLDL and LDL and elevated HDL-cholesterol. Observed lipid-lowering effects of myriocin were associated with suppression of HMG CoA reductase and fatty acid synthase via reduced levels of SREBP-I RNA and protein. Induction of apoAI and lecithin:cholesterol acytransferase (LCAT) in the liver by myriocin was associated with an increased HDL. Lesion area and macrophage area were also diminished in the cuffed femoral artery of ApoE KO mice. In conclusion, inhibition of sphingolipid biosynthesis can be a novel therapeutic target for dyslipidemia and atherosclerosis. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available