4.5 Article

Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 21, Issue 12, Pages 3072-3079

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/JMR.2006.0379

Keywords

-

Ask authors/readers for more resources

Measurements of vibrational spectra of atomic force microscopy (AFM) microprobes in contact with a sample allow a good correlation between resonance frequencies shifts and the effective elastic modulus of the tip-sample system. In this work we use finite element methods for modeling the AFM microprobe vibration considering actual features of the cantilever geometry. This allowed us to predict the behavior of the cantilevers in contact with any sample for a wide range of effective tip-sample stiffness. Experimental spectra for glass and chromium were well reproduced for the numerical model, and stiffness values were obtained. We present a method to correlate the experimental resonance spectrum to the effective stiffness using realistic geometry of the cantilever to numerically model the vibration of the cantilever in contact with a sample surface. Thus, supported in a reliable finite element method (FEM) model, atomic force acoustic microscopy can be a quantitative technique for elastic-modulus measurements. Considering the possibility of tip-apex wear during atomic force acoustic microscopy measurements, it is necessary to perform a calibration procedure to obtain the tip-sample contact areas before and after each measurement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available