4.6 Article

Fish and mucus-dwelling bacteria interact to produce a kairomone that induces diel vertical migration in Daphnia

Journal

FRESHWATER BIOLOGY
Volume 51, Issue 12, Pages 2200-2206

Publisher

WILEY
DOI: 10.1111/j.1365-2427.2006.01642.x

Keywords

ampicillin; external mucus; infochemical; kanamycin; viable count

Ask authors/readers for more resources

1. Bacterial populations associated with fish have previously been documented to be crucial for the production of chemical signals governing the interactions between predator fish and zooplankton prey. 2. In this study, we investigated the roles of fish and mucus-dwelling bacteria in kairomone production by conducting two sets of experiments related to elimination of bacteria with antibiotics and using fish mucus in bioassays of Daphnia pulex's diel vertical migration. 3. Daphnia's migratory response to the antibiotic-treated fish was about half the strength of the response to the fish cue treatment. Furthermore, when the same antibiotic-treated fish were removed from the antibiotic-containing water and transferred into control water for 24 and 48 h, the extent of D. pulex's migration depended on the length of the incubation period, apparently corresponding to the regeneration of bacterial colonies associated with mucus. The migration pattern observed in the 24 h treatment was similar to that of antibiotic-treated fish. On the other hand, a pronounced migration occurred in the 48 h following antibiotic treatment; here, we found a higher density of fish surface dwelling bacteria than at the start of the experiment. 4. In the experiment involving fish mucus, the mucus-enriched control water induced a weak response similar to antibiotic-treated fish. 5. On the basis of the results from the two experiments, we suggest that both fish and fish mucus-dwelling bacteria interact in the release of kairomone in ecologically relevant quantities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available