4.7 Article

New debris disks around nearby main-sequence stars: Impact on the direct detection of planets

Journal

ASTROPHYSICAL JOURNAL
Volume 652, Issue 2, Pages 1674-1693

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/508449

Keywords

circumstellar matter; infrared : stars; Kuiper Belt

Funding

  1. STFC [PP/D000890/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/D000890/1] Funding Source: researchfish

Ask authors/readers for more resources

Using the MIPS instrument on Spitzer, we have searched for infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence field stars, along with a small number of nearby M stars. These stars were selected for their suitability for future observations by a variety of planet-finding techniques. These observations provide information on the asteroidal and cometary material orbiting these stars, data that can be correlated with any planets that may eventually be found. We have found significant excess 70 mu m emission toward 12 stars. Combined with an earlier study, we find an overall 70 mu m excess detection rate of 13% +/- 3% for mature cool stars. Unlike the trend for planets to be found preferentially toward stars with high metallicity, the incidence of debris disks is uncorrelated with metallicity. By newly identifying four of these stars as having weak 24 mu m excesses (fluxes similar to 10% above the stellar photosphere), we confirm a trend found in earlier studies wherein a weak 24 mu m excess is associated with a strong 70 mu m excess. Interestingly, we find no evidence for debris disks around 23 stars cooler than K1, a result that is bolstered by a lack of excess around any of the 38 K1-M6 stars in two companion surveys. One motivation for this study is the fact that strong zodiacal emission can make it hard or impossible to detect planets directly with future observatories such as the Terrestrial Planet Finder (TPF). The observations reported here exclude a few stars with very high levels of emission, > 1000 times the emission of our zodiacal cloud, from direct planet searches. For the remainder of the sample, we set relatively high limits on dust emission from asteroid belt counterparts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available