4.6 Article

Magnetization damping in ultrathin polycrystalline Co films: Evidence for nonlocal effects

Journal

PHYSICAL REVIEW B
Volume 74, Issue 21, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.214405

Keywords

-

Ask authors/readers for more resources

The magnetic properties and magnetization dynamics of polycrystalline ultrathin Co layers were investigated using a broadband ferromagnetic resonance technique at room temperature. A variable-thickness (1 nm <= t <= 10 nm) Co layer is sandwiched between 10-nm-thick Cu layers (10 nm Cu vertical bar t Co vertical bar 10 nm Cu), while materials in contact with the Cu outer interfaces are varied to determine their influence on the magnetization damping. The resonance field and the linewidth were studied for in-plane magnetic fields in field-swept experiments at a fixed frequency, from 4 to 25 GHz. The Co layers have a lower magnetization density than the bulk and an interface contribution to the magnetic anisotropy normal to the film plane. The Gilbert damping, as determined from the frequency dependence of the linewidth, increases with decreasing Co layer thickness for films with outer Pt layers. This enhancement is not observed in structures without Pt layers. The result can be understood in terms of a nonlocal contribution to the damping due to spin pumping from Co through the Cu layer and spin relaxation in Pt layers. Pt layers just 1.5 nm thick are found to be sufficient to enhance the damping and thus act as efficient spin sinks. In structures with Pt outer layers, this nonlocal contribution to the damping becomes predominant when the Co layer is thinner than 4 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available