4.7 Article

Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data

Journal

Publisher

SPRINGER
DOI: 10.1007/s00477-006-0047-4

Keywords

Bayesian analysis; extreme events; stationarity; uncertainties; climate change; frequency analysis

Ask authors/readers for more resources

Statistical analysis of extremes currently assumes that data arise from a stationary process, although such an hypothesis is not easily assessable and should therefore be considered as an uncertainty. The aim of this paper is to describe a Bayesian framework for this purpose, considering several probabilistic models (stationary, step-change and linear trend models) and four extreme values distributions (exponential, generalized Pareto, Gumbel and GEV). Prior distributions are specified by using regional prior knowledge about quantiles. Posterior distributions are used to estimate parameters, quantify the probability of models and derive a realistic frequency analysis, which takes into account estimation, distribution and stationarity uncertainties. MCMC methods are needed for this purpose, and are described in the article. Finally, an application to a POT discharge series is presented, with an analysis of both occurrence process and peak distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available