4.3 Article

QSPR of the bioconcentration factors of non-ionic organic compounds in fish using extended topochemical atom (ETA) indices

Journal

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
Volume 17, Issue 6, Pages 563-582

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10629360601033499

Keywords

QSAR; QSPR; ETA; topological indices; bioconcentration factor

Ask authors/readers for more resources

Bioconcentration refers to the absorption or uptake of a chemical from the media to an organism's tissues leading to greater concentration in tissues than that in the surrounding environment. Considering the importance of bioconcentration from the viewpoint of ecological safety assessment, a QSPR study was conducted based upon log BCF of 122 non-ionic organic compounds in fish using the recently introduced extended topochemical atom (ETA) indices. In deriving the models, principal component factor analysis (FA) followed by multiple linear regression (MLR), stepwise regression, partial least squares (PLS) and principal component regression analysis (PCRA) were applied as statistical tools. This was repeated with non-ETA (topological and physicochemical) descriptors and a combination set including both the ETA and non-ETA descriptors. The ETA indices suggested negative contributions of functionalities of nitro, amino and hydroxy substructures and positive contributions of branching, volume and functionality of chloro substituents. Again, the predictive ability of the developed models was compared with the previously reported models. Finally the validation of all the QSAR models was discussed based on random division, sorted logBCF data and K-means clusters for the factor scores of the original variable (ETA) matrix without the response property values. The results suggest that ETA parameters are sufficiently rich in chemical information to encode the structural features contributing to the bioconcentration of the non-ionic organic compounds in fish and thus these merit further assessment to explore their potential in QSAR/QSPR/QSTR modelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available