4.4 Article

Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis

Journal

JOURNAL OF BACTERIOLOGY
Volume 188, Issue 24, Pages 8573-8585

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01481-06

Keywords

-

Categories

Funding

  1. NHLBI NIH HHS [R01 HL058334, HL58334] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM066094, R56 GM066094, GM66094] Funding Source: Medline

Ask authors/readers for more resources

Pseudomonas aeruginosa is a human opportunistic pathogen that chronically infects the lungs of cystic fibrosis patients and is the leading cause of morbidity and mortality of people afflicted with this disease. A striking correlation between mutagenesis and the persistence of A aeruginosa has been reported. In other well-studied organisms, error-prone replication by Y family DNA polymerases contributes significantly to mutagenesis. Based on an analysis of the PAO1 genome sequence, P. aeruginosa contains a single Y family DNA polymerase encoded by the dinB gene. As part of an effort to understand the mechanisms of mutagenesis in P. aeruginosa, we have cloned the dinB gene of P. aeruginosa and utilized a combination of genetic and biochemical approaches to characterize the activity and regulation of the P. aeruginosa DinB protein (DinB(Pa)). Our results indicate that DinB(Pa) is a distributive DNA polymerase that lacks intrinsic proofreading activity in vitro. Modest overexpression of DinB(Pa) from a plasmid conferred a mutator phenotype in both Escherichia coli and P. aeruginosa. An examination of this mutator phenotype indicated that DinB,., has a propensity to promote C -> A transversions and -1 frameshift mutations within poly(dGMP) and poly(dAMP) runs. The characterization of lexA(+) and Delta lexA(+)::aacC1 P. aeruginosa strains, together with in vitro DNA binding assays utilizing cell extracts or purified P. aeruginosa LexA protein (LexA(Pa)), indicated that the transcription of the dinB gene is regulated as part of an SOS-like response. The deletion of the dinB(Pa) gene sensitized P. aeruginosa to nitrofurazone and 4-nitroquinoline-1-oxide, consistent with a role for DinB(Pa) in translesion DNA synthesis over N-2-dG adducts. Finally, P. aeruginosa exhibited a UV-inducible mutator phenotype that was independent of dinBPa function and instead required polA and polC, which encode DNA polymerase I and the second DNA polymerase III enzyme, respectively. Possible roles of the A aeruginosa dinB, polA, and polC gene products in mutagenesis are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available