4.7 Article

In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion

Journal

CLINICAL CANCER RESEARCH
Volume 12, Issue 23, Pages 7126-7131

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-06-1101

Keywords

-

Categories

Funding

  1. MRC [G0501974] Funding Source: UKRI
  2. Medical Research Council [G0501974] Funding Source: researchfish
  3. Medical Research Council [G0501974] Funding Source: Medline
  4. Breast Cancer Now [BREAST CANCER NOW RESEARCH CENTRE] Funding Source: Medline

Ask authors/readers for more resources

Purpose: Malignant pleural mesothelioma (MPM) is an increasing health burden on many societies worldwide and, being generally resistant to conventional treatment, has a poor prognosis with a median survival of <1 year. Novel therapies based on the biology of this tumor seek to activate a proapoptotic cellular pathway. In this study, we investigated the expression and biological significance of argininosuccinate synthetase (AS), a rate-limiting enzyme in arginine production. Experimental Design: Initially, we documented down-regulation of AS mRNA in three of seven MPM cell lines and absence of AS protein in four of seven MPM cell lines. We confirmed that the 9q34 locus, the site of the AS gene, was intact using a 1-Mb comparative genomic hybridization array; however, there was aberrant promoter CpG methylation in cell lines lacking AS expression, consistent with epigenetic regulation of transcription. To investigate the use of AS negativity as a therapeutic target, arginine was removed from the culture medium of the MPM cell lines. Results: In keeping with the cell line data, 63% (52 of 82) of patients had tumors displaying reduced or absent AS protein, as assessed using a tissue microarray. Cell viability declined markedly in the AS-negative cell lines 2591 and MSTO but not in the AS-positive cell line, 28. This response was apparent by day 4 and maintained by day 9 in vitro. Arginine depletion induced BAX conformation change and mitochondrial inner membrane depolarization selectively in AS-negative MPM cells. Conclusions: In summary, we have identified AS negativity as a frequent event in MPM in vivo, leading to susceptibility to cytotoxicity following restriction of arginine. A phase II clinical trial is planned to evaluate the role of arginine depletion in patients with AS-negative MPM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available