4.4 Article

Methylmercury induces activation of Notch signaling

Journal

NEUROTOXICOLOGY
Volume 27, Issue 6, Pages 982-991

Publisher

ELSEVIER
DOI: 10.1016/j.neuro.2006.04.005

Keywords

notch; methylmercury; ADAM protease; enhancer of split genes

Funding

  1. NCRR NIH HHS [P20RR16435-01] Funding Source: Medline
  2. NIEHS NIH HHS [R21ES013754-1] Funding Source: Medline

Ask authors/readers for more resources

Methylmercury (MeHg) toxicity in humans manifests deficits in neurological function. Cases of prenatal exposure to mercury have established that the developing nervous system is most highly susceptible to perturbation by MeHg. At a cellular level, MeHg-induced defects result from altered neuronal proliferation, migration and pathfinding. However, the molecular targets of MeHg that give rise to these outcomes are not fully understood. In an overall effort to identify the fundamental molecular targets of MeHg in neural development, we have explored the effects of MeHg on cell surface receptor function using the simplified Drosophila model. In this study, we investigated the potential role of MeHg to alter activity of the Notch receptor pathway, a highly conserved cell-cell signaling mechanism that controls cell fate decisions, proliferation, migration and neurite outgrowth in neural development. Notch receptor activation requires proteolysis by a cell surface ADAM metalloprotease. ADAM proteases are required for normal neural development and are activated by organomercurials, thus presenting a possible mechanism for MeHg neurotoxicity. Here, we demonstrate a concentration- and time-dependent increase in Notch receptor activity with MeHg exposure in three distinct Drosophila cell lines. Ten micromolar MeHg results in a 4-5.5-fold increase in Notch signaling as measured by the upregulation of two enhancer of split (E(spl)) target genes. MeHg-induced Notch activity also correlates with receptor proteolysis. Targeted knockdown of Notch protein expression demonstrates that MeHg induced E(spl) activation specifically requires the Notch receptor. Furthermore, MeHg-induced Notch activity is partially attenuated by the metalloprotease inhibitor, GM6001, consistent with a model in which MeHg promotes activation of ADAM metalloproteases. Finally, we demonstrate that inorganic HgCl2 is significantly less active in inducing Notch activity, suggesting a mechanism specific to organic species of mercury. Overall, these data identify Notch as a potential target for MeHg toxicity in the developing nervous system. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available