4.6 Article

Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity

Journal

PHYSICAL REVIEW B
Volume 74, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.224506

Keywords

-

Ask authors/readers for more resources

We theoretically investigate selective coupling of superconducting charge qubits mediated by a superconducting stripline cavity with a tunable resonance frequency. The frequency control is provided by a flux-biased dc superconducting quantum interference device attached to the cavity. Selective entanglement of the qubit states is achieved by sweeping the cavity frequency through the qubit-cavity resonances. The circuit is able to accommodate several qubits and allows one to keep the qubits at their optimal points with respect to decoherence during the whole operation. We derive an effective quantum Hamiltonian for the basic, two-qubit-cavity system, and analyze appropriate circuit parameters. We present a protocol for performing Bell inequality measurements, and discuss a composite pulse sequence generating a universal control-phase gate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available