4.1 Article

Reconstitution of human immunodeficiency virus-induced neurodegeneration using isolated populations of human neurons, astrocytes, and microglia and neuroprotection mediated by insulin-like growth factors

Journal

JOURNAL OF NEUROVIROLOGY
Volume 12, Issue 6, Pages 472-491

Publisher

SPRINGER
DOI: 10.1080/13550280601039659

Keywords

astrocyte; HIV; IGF; microglia; neurodegeneration; neuron

Funding

  1. NINDS NIH HHS [NS37277, NS35734] Funding Source: Medline

Ask authors/readers for more resources

Primary human neuron cultures are an important in vitro model system for studies on mechanisms involved in human immunodeficiency virus (HIV)-associated dementia (HAD) and other neurological disorders. Here, more than 80 cell surface antigens were screened to identify a marker that could readily distinguish between neurons and astrocytes and found that neurons lack CD44 surface expression, whereas astrocytes and other cell types in brain are CD44(+). Neurons and astrocytes were isolated from human fetal brain based on differential expression of CD44. Using purified neurons cocultured with astrocytes and/or microglia, it was demonstrated that HIV infection of microglia induces cellular activation and production of soluble factors that activate uninfected microglia and astrocytes and induce neuronal cell death. Activated astrocytes promoted HIV replication in microglia, thereby amplifying HIV-induced neurotoxicity. A screen for 120 cytokine/proteins detected upregulation of insulin-like growth factor (IGF)-binding protein (IGFBP)-2, interleukin (IL)-6, and CCL8/MCP-2 (monocyte chemoattractant protein 2) in supernatants of HIV-infected brain cell cultures. IGF-1 and -2 increased neuronal survival in HIV-infected brain cell cultures, whereas IGFBP-2 inhibited prosurvival effects of these growth factors. These findings identify CD44 as a marker that can be used to sort neurons from other cell types in brain, suggest the importance of microglia-astrocyte interactions in neurodegenerative mechanisms associated with HIV infection, and indicate a role for insulin-like growth factors in neuroprotection from HIV-induced neurodegeneration. The ability to reconstitute brain cultures using isolated populations of neurons, astrocytes, and microglia will be valuable for studies on pathogenic mechanisms in HAD and other neurological disorders, and will also facilitate neuroactive drug discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available