4.6 Article Proceedings Paper

Real-time reservoir model updating using ensemble Kalman Filter with confirming option

Journal

SPE JOURNAL
Volume 11, Issue 4, Pages 431-442

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/92991-PA

Keywords

-

Ask authors/readers for more resources

The ensemble Kalman Filter technique (EnKF) has been reported to be very efficient for real-time updating of reservoir models to match the most current production data. Using EnKF, an ensemble of reservoir models assimilating the most current observations of production data is always available. Thus, the estimations of reservoir model parameters, and their associated uncertainty, as well as the forecasts are always up-to-date. In this paper, we apply the EnKF for continuously updating an ensemble of permeability models to match real-time multiphase production data. We improve the previous EnKF by adding a confirming option (i.e., the flow equations are resolved from the previous assimilating step to the current step using the updated current permeability models). By doing so, we ensure that the updated static and dynamic parameters are always consistent with the flow equations at the current step. However, it also creates some inconsistency between the static and dynamic parameters at the previous step where the confirming starts. Nevertheless, we show that, with the confirming approach, the filter shows better performance for the particular example investigated. We also investigate the sensitivity of using a different number of realizations in the EnKF. Our results show that a relatively large number of realizations are needed to obtain stable results, particularly for the reliable assessment of uncertainty. The sensitivity of using different covariance functions is also investigated. The efficiency and robustness of the EnKF is demonstrated using an example. By assimilating more production data, new features of heterogeneity in the reservoir model can be revealed with reduced uncertainty, resulting in more accurate predictions of reservoir production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available