4.6 Article

Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact

Journal

APPLIED PHYSICS LETTERS
Volume 89, Issue 23, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2402890

Keywords

-

Ask authors/readers for more resources

The challenge to reversing the layer sequence of organic photovoltaics (OPVs) is to prepare a selective contact bottom cathode and to achieve a suitable morphology for carrier collection in the inverted structure. The authors report the creation of an efficient electron selective bottom contact based on a solution-processed titanium oxide interfacial layer on the top of indium tin oxide. The use of o-xylene as a solvent creates an efficient carrier collection network with little vertical phase segregation, providing sufficient performance for both regular and inverted solar cells. The authors demonstrate inverted layer sequence OPVs with AM 1.5 calibrated power conversion efficiencies of over 3%. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available