4.6 Article

Modeling regulatory mechanisms in IL-6 signal transduction in hepatocytes

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 95, Issue 5, Pages 850-862

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/bit.21026

Keywords

interleukin-6; hepatocytes; mathematical model; cross-talk; signal transduction; STAT; MAPK

Ask authors/readers for more resources

Cytokines like interleukin-6 (IL-6) play an important role in triggering the acute phase response of the body to injury or inflammation. Signaling by IL-6 involves two pathways: Janus-associated kinases (JAK) and signal transducers and activators of transcription (STAT 3) are activated in the first pathway while the second pathway involves the activation of mitogen-activated protein kinases (MAPK). While it is recognized that both pathways play a major role in IL-6 signal transduction, a majority of studies have focused on signaling through either one of the pathways. However, simultaneous signaling through both JAK/STAT and MAPK pathways is still poorly understood. In this work, a mathematical model has been developed that integrates signaling through both the JAK/STAT and the MAPK pathway. The presented model is used to analyze the effect of three molecules that are involved in the regulation of IL-6 signaling-SHP-2 (domain containing tyrosine phosphatase 2), SOCS3 (suppressor of cytokine signaling 3), and a STAT3 nuclear phosphatase (PP2)-on the dynamics of IL-6 signal transduction in hepatocytes. The obtained results suggest that interactions between SHP-2 and SOCS3 influence signaling through the JAK/STAT and the MAPK pathways. It is shown that SHP-2 and SOCS3 do not just regulate the pathway that they are known to be associated with, (SHP-2 with MAPK and SOCS3 with JAK/STAT), but also have a strong effect on the other pathway. Several simulations with SOCS3, SHP-2, and PP2 knockout cells, that is, where the signaling pathway is unable to produce these proteins, have been performed to characterize the effect of these regulatory proteins on IL-6 signal transduction in hepatocytes. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available