4.8 Article

Immobilization of ligands with precise control of density to electroactive surfaces

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 48, Pages 15542-15546

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja065828l

Keywords

-

Ask authors/readers for more resources

We report a broadly applicable surface chemistry methodology to immobilize ligands, proteins, and cells to an electroactive substrate with precise control of ligand density. This strategy is based on the coupling of soluble aminooxy terminated ligands with an electroactive quinone terminated monolayer. The surface chemistry product oxime is also redox active but at a different potential and therefore allows for real-time monitoring of the immobilization reaction. Only the quinone form of the immobilized redox pair is reactive with soluble aminooxy groups, which allows for the determination of the yield of reaction, the ability to immobilize multiple ligands at controlled densities, and the in-situ modulation of ligand activity. We demonstrate this methodology by using cyclic voltammetry to characterize the kinetics of a model interfacial reaction with aminooxy acetic acid. We also demonstrate the synthetic flexibility and utility of this method for biospecific interactions by installing aminooxy terminated FLAG peptides and characterizing their binding to soluble anti-FLAG with surface plasmon resonance spectroscopy. We further show this methodology is compatible with microarray technology by printing rhodamine-oxyamine in various size spots and characterizing the yield within the spots by cyclic voltammetry. We also show this methodology is compatible with cell culture conditions and fluorescent microscopy technology for cell biological studies. Arraying RGD-oxyamine peptides on these substrates allows for bio-specific adhesion of Swiss 3T3 Fibroblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available