4.5 Article

Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 48, Pages 24410-24417

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0643496

Keywords

-

Ask authors/readers for more resources

To clarify the transport mechanisms of alcohols and proton in perfluorosulfonated ionomer (PFSI) membranes for fuel cells, four membranes having different equivalent weight (EW) values were examined. Membranes were immersed in methanol, ethanol, and 2-propanol to prepare a total of 12 samples, and membrane swelling, mass (alcohol and proton) transports, and interactions between alcohols and proton were investigated systematically in the fully penetrated state. The membrane expansion fraction theta and alcohol content lambda increased with decreasing the EW value for all the samples. The self-diffusion coefficients (D's) of the alkyl group and\ of OH (including protons) were measured separately by the pulsed-gradient spin-echo (PGSE)-NMR method and the D's also increased with decreasing the EW value. These results implied that the alcohols penetrate into the hydrophilic regions of the PFSI membranes and diffuse through the space expanded by the alcohols. The ionic cluster regions formed by the alcohols resemble those induced by water in the water swollen membrane, where protons dissociated from sulfonic acid groups transport through the regions together with water molecules. The D values decreased with increasing the molecular weight of alcohols. This trend was supported by activation energies E-a estimated from the Arrhenius plots of D in the temperature range from 30 to -40 degrees C. The PGSE-NMR measurements also revealed that protons move faster than the alkyl groups in the membranes. The proton transport by the Grotthuss (hopping) mechanism was facilitated by the increase of the alcohol content and the decrease of the molecular weight. This result was also supported by the experimental results of proton conductivity kappa and mobility u(H+). Density functional theory (DFT) calculations of the interaction energy Delta E-int between proton and alcohol (including OH) showed that the vertical bar Delta E-int vertical bar increases with increasing the molecular weight of alcohols, which is in a inverse relationship with the kappa and u(H+) values. The proton transport depends strongly on the Delta E-int in the membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available