4.6 Article

Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 49, Pages 37416-37426

Publisher

ELSEVIER
DOI: 10.1074/jbc.M605063200

Keywords

-

Ask authors/readers for more resources

Dicumarol is a naturally occurring anticoagulant derived from coumarin that induces cytotoxicity and oxidative stress in human pancreatic cancer cells (Cullen, J. J., Hinkhouse, M. M., Grady, M., Gaut, A. W., Liu, J., Zhang, Y., Weydert, C. J. D., Domann, F. E., and Oberley, L. W. (2003) Cancer Res. 63, 5513 5520). Although dicumarol has been used as an inhibitor of the two-electron reductase NAD(P)H:quinone oxidoreductase (NQO1), dicumarol is also thought to affect quinone-mediated electron transfer reactions in the mitochondria, leading to the production of superoxide (O-2((center dot) over bar)) and hydrogen peroxide (H2O2). We hypothesized that mitochondrial production of reactive oxygen species mediates the increased susceptibility of pancreatic cancer cells to dicumarol-induced metabolic oxidative stress. Dicumarol decreased clonogenic survival equally in both MDA-MB-468 NQO1(-) and MDA-MB-468 NQO1(-) breast cancer cells. Dicumarol decreased clonogenic survival in the transformed fibroblast cell line IMRSV-90 compared with the IMR-90 cell line. Dicumarol, with the addition of mitochondrial electron transport chain blockers, decreased clonogenic cell survival in human pancreatic cancer cells and increased superoxide levels. Dicumarol with the mitochondrial electron transport chain blocker antimycin A decreased clonogenic survival and increased superoxide levels in cells with functional mitochondria but had little effect on cancer cells without functional mitochondria. Overexpression of manganese superoxide dismutase and mitochondrial-targeted catalase with adenoviral vectors reversed the dicumarol-induced cytotoxicity and reversed fluorescence of the oxidation-sensitive probe. We conclude mitochondrial production of reactive oxygen species mediates the increased susceptibility of cancer cells to dicumarol-induced cytotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available