4.4 Article

Evolution of enzymatic activities in the enolase superfamily:: D-tartrate dehydratase from Bradyrhizobium japonicum

Journal

BIOCHEMISTRY
Volume 45, Issue 49, Pages 14598-14608

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi061688g

Keywords

-

Funding

  1. NIGMS NIH HHS [GM-52594, GM-71790] Funding Source: Medline

Ask authors/readers for more resources

We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second beta-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth beta-strands, respectively, as well as ligands for an essential Mg2+, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth beta-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k(cat) = 7.3 s(-1); k(cat)/K-M = 8.5 x 10(4) M-1 s(-1)) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the alpha-proton to generate a Mg2+-stabilized enediolate intermediate, and the vinylogous beta-elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by H-1 NMR spectroscopy. Thus, the TarD-catalyzed reaction is a simple extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg2+-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available