4.4 Article

High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase

Journal

BIOCHEMISTRY
Volume 45, Issue 49, Pages 14642-14654

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0612465

Keywords

-

Funding

  1. NIA NIH HHS [AG12993, AG17996] Funding Source: Medline

Ask authors/readers for more resources

Methionines can play an important role in modulating protein-protein interactions associated with intracellular signaling, and their reversible oxidation to form methionine sulfoxides [Met(O)] in calmodulin (CaM) and other signaling proteins has been suggested to couple cellular redox changes to protein functional changes through the action of methionine sulfoxide reductases (Msr). Prior measurements indicate the full recovery of target protein activation upon the stereospecific reduction of oxidized CaM by MsrA, where the formation of the S-stereoisomer of Met(O) selectively inhibits the CaM-dependent activation of the Ca-ATPase. However, the physiological substrates of MsrA remain unclear, as neither the binding specificities nor affinities of protein targets have been measured. To assess the specificity of binding and its possible importance in the maintenance of CaM function, we have measured the kinetics of repair and the binding affinity between oxidized CaM and MsrA. Reduction of Met(O) in fully oxidized CaM by MsrA is sensitive to the protein fold, as repair of the intact protein is incomplete, with > 6 Met(O) remaining in each CaM following MsrA reduction. In contrast, following proteolytic digestion, MsrA is able to fully reduce one-half of the oxidized methionines, indicating that surface-accessible Met(O) within folded proteins need not be substrates for MsrA repair. Mutation of the active site (i.e., C72S) in MsrA permitted equilibrium-binding measurements using both ensemble and single-molecule fluorescence correlation spectroscopy measurements. We observe cooperative binding of two MsrA to each CaMox with an apparent affinity (K = 70 +/- 10 nM) that is 3 orders of magnitude greater than the Michaelis constant (K-M = 68 +/- 4 mu M). The high-affinity and cooperative interaction between MsrA and CaMox suggests an important regulatory role of MsrA in the binding and reduction of Met(O) in functionally sensitive proteins, such that multiple MsrA proteins are recruited to simultaneously bind and reduce Met(O) in highly oxidized proteins. Given the suggested role of Met(O) in modulating reversible binding interactions between proteins associated with cellular signaling, these results indicate an ability of MsrA to selectively reduce Met(O) within highly surface-accessible sequences to maintain cellular function as part of an adaptive response to oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available