4.8 Article

AKAP150, a switch to convert mechano-, pH- and arachidonic acid- sensitive TREK K+ channels into open leak channels

Journal

EMBO JOURNAL
Volume 25, Issue 24, Pages 5864-5872

Publisher

WILEY
DOI: 10.1038/sj.emboj.7601437

Keywords

G-protein-coupled receptors; ion channels; proteomics; scaffolding

Ask authors/readers for more resources

TREK channels are unique among two-pore-domain K+ channels. They are activated by polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), phospholipids, mechanical stretch and intracellular acidification. They are inhibited by neurotransmitters and hormones. TREK-1 knockout mice have impaired PUFA-mediated neuroprotection to ischemia, reduced sensitivity to volatile anesthetics and altered perception of pain. Here, we show that the A-kinase-anchoring protein AKAP150 is a constituent of native TREK-1 channels. Its binding to a key regulatory domain of TREK-1 transforms low-activity outwardly rectifying currents into robust leak conductances insensitive to AA, stretch and acidification. Inhibition of the TREK-1/AKAP150 complex by Gs-coupled receptors such as serotonin 5HT4sR and noradrenaline beta 2AR is as extensive as for TREK-1 alone, but is faster. Inhibition of TREK-1/AKAP150 by Gq-coupled receptors such as serotonin 5HT2bR and glutamate mGluR5 is much reduced when compared to TREK-1 alone. The association of AKAP150 with TREK channels integrates them into a postsynaptic scaffold where both G-protein-coupled membrane receptors (as demonstrated here for beta 2AR) and TREK-1 dock simultaneously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available