4.5 Article

Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 49, Pages 24855-24863

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp065478p

Keywords

-

Ask authors/readers for more resources

We report on the synthesis, characterization, and electrochemical properties of Ag2V4O11 nanowires, alpha-AgVO3 microrods, and beta-AgVO3 nanowires that were synthesized through a simple and facile low-temperature hydrothermal approach without any template or catalyst. It was found that by simply controlling the hydrothermal reaction parameters such as pH and dwell time, the transformation of alpha-AgVO3 microrods to beta-AgVO3 nanowires were readily achieved through a ripening-splitting model mechanism. Electrochemical measurements revealed that the as-prepared Ag2V4O11 nanowires, alpha-AgVO3 microrods, and beta-AgVO3 nanowires exhibited high discharge capacities and excellent high-rate dischargeability. In particular, the beta-AgVO3 nanowires have much higher capacity above 3 V than that of alpha-AgVO3 microrods, Ag2V4O11 nanowires, and commercial Ag2V4O11 bulk. The mechanisms for electrochemical lithium intercalation of the AgVO3 nanostructures were also discussed. It is anticipated that the novel Ag2V4O11 and AgVO3 one-dimensional nano/microstructures are promising cathode candidates in the application of primary lithium ion batteries for implantable cardioverter defibrillators (ICDs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available