4.8 Article

First-order phase transition in easy-plane quantum antiferromagnets

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.247201

Keywords

-

Ask authors/readers for more resources

Quantum phase transitions in Mott insulators do not fit easily into the Landau-Ginzburg-Wilson paradigm. A recently proposed alternative to it is the so-called deconfined quantum criticality scenario, providing a new paradigm for quantum phase transitions. In this context it has recently been proposed that a second-order phase transition would occur in a two-dimensional spin 1/2 quantum antiferromagnet in the deep easy-plane limit. A check of this conjecture is important for understanding the phase structure of Mott insulators. To this end we have performed large-scale Monte Carlo simulations on an effective gauge theory for this system, including a Berry-phase term that projects out the S=1/2 sector. The result is a first-order phase transition, thus contradicting the conjecture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available