4.5 Article

Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 127, Issue 1, Pages 84-94

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2006.06.004

Keywords

open-loop control; PAT; reproducible recombinant protein production; statistical process analysis

Ask authors/readers for more resources

Recombinant protein production processes are typically divided into two phases. In the first one, pure cell propagation takes place, while in the second one product formation is switched on within the cells by adding an inducer. In the initial biomass formation phase, the cell density is rather low and, hence, the measurement quantities that could be used to determine the process' state depict small values and are rather severely distorted by measurement noise. Because of these measurement problems, the fermentation cannot be reliably controlled by feedback control during this first production phase; instead, the process must be controlled in an open-loop fashion. The consequence, worked out in this paper, is to design substrate feed rate profiles for the growth phase in such a way that they are robust with respect to the main disturbances observed in practice. The robustness of the biomass formation is shown to be primarily dependent on the specific growth rate adjusted in the first hours. High batch-to-batch reproducibility can be obtained with exponential feeding profiles F(t) corresponding to specific growth rates mu(set) well below the maximal specific growth rate mu(max) of the organism. The reduction in the growth rate needed to obtain a robust process behavior depends on the inaccuracies in the initial biomass concentrations. Quantitative feed rate profiles were obtained by numerical simulation and these results were validated experimentally by means of a series of cultivation runs, where a recombinant pharmaceutical protein was produced. All experimental data confirmed the assumptions made in the robust process design study. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available