4.5 Article

Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy

Journal

JOURNAL OF CELL SCIENCE
Volume 119, Issue 24, Pages 5114-5123

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.03300

Keywords

muscular dystrophy; stem cells; nitric oxide; cyclic GMP; apoptosis; differentiation

Categories

Funding

  1. Telethon [GGP05007] Funding Source: Medline

Ask authors/readers for more resources

Muscular dystrophies are characterized by primary wasting of skeletal muscle for which no satisfactory therapy is available. Studies in animal models have shown that stem cell-based therapies may improve the outcome of the disease, and that mesoangioblasts are promising stem cells in this respect. The efficacy of mesoangioblasts in yielding extensive muscle repair is, however, still limited. We found that mesoangioblasts treated with nitric oxide ( NO) donors and injected intra-arterially in alpha-sarcoglycan-null dystrophic mice have a significantly enhanced ability to migrate to dystrophic muscles, to resist their apoptogenic environment and engraft into them, yielding a significant recovery of alpha-sarcolgycan expression. In vitro NO-treated mesoangioblasts displayed an enhanced chemotactic response to myotubes, cytokines and growth factors generated by the dystrophic muscle. In addition, they displayed an increased ability to fuse with myotubes and differentiating myoblasts and to survive when exposed to cytotoxic stimuli similar to those present in the dystrophic muscle. All the effects of NO were cyclic GMP-dependent since they were mimicked by treatment with the membrane permeant cyclic-GMP analogue 8-bromo-cGMP and prevented by inhibiting guanylate cyclase. We conclude that NO donors exert multiple beneficial effects on mesoangioblasts that may be used to increase their efficacy in cell therapy of muscular dystrophies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available