4.6 Article

Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one- and two-dimensional separations

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1136, Issue 2, Pages 210-220

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2006.09.072

Keywords

monolithic column; poly-(styrene-divinylbenzene); column switching; preconcentration column; trapping; multidimensional chromatography; peptides; proteins

Ask authors/readers for more resources

Monolithic columns based on poly-(styrene-divinylbenzene) (PS-DVB) were utilized both for preconcentration (in 10 mm x 0.20 mm I.D. format) and analytical separation (in 60 mm x 0.20 and 0.10 mm I.D. format) of peptides and proteins in column switching micro-scale high-performance liquid chromatography. A special holder for short monolithic preconcentration columns was designed and pressure durability tests approved long-term stability up to 400 bar. An 11-20% decrease in the average peak widths of nine peptides was obtained upon combining a preconcentration column with an analytical column as compared with a setup using an analytical column only. Trapping efficiency, especially for small and hydrophilic peptides, was optimized by using 0.10% heptafluorobutyric acid instead of 0.050% trifluoroacetic acid as solvent additive during sample loading. Using a 10 mm x 0.20 mm I.D. preconcentration column, loadabilities between 0.5 and 1.6 mu g were determined by frontal analysis of proteins and bioactive peptides, respectively. A 100-fold concentration followed by direct on-line intact mass determination is demonstrated for diluted (3 mu mol L-1) protein solutions. The applicability of the monolithic preconcentration column for multidimensional chromatography was tested by off-line two-dimensional separation, combining strong cation-exchange chromatography and ion-pair reversed-phase chromatography. Peptide identification data from digested protein mixtures demonstrated reproducibilities of 46-75% in triplicate analyses, and confident peptide identifications of low abundant peptides even in the presence of a 650-fold molar excess of high abundant peptides. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available