4.7 Article

Nitric oxide modulates glutathione synthesis during endotoxemia

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 41, Issue 12, Pages 1817-1828

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2006.09.010

Keywords

nitric oxide; glutathione biosynthesis pathway; gamma-glutamylcysteine ligase; cysteine; cystathionase; antioxidant enzymes

Ask authors/readers for more resources

Nitric oxide is known to modulate intracellular glutathione levels, but the relationship between nitric oxide synthesis and glutathione metabolism during endotoxemia is unknown. The present study was designed to examine the effects of increased nitric oxide formation on hepatic glutathione synthesis and antioxidant defense in endotoxemic mice. Our results demonstrate that hepatic glutathione synthesis is decreased for 24 h following injection of lipopolysaccharide (LPS). Administration of the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTZ), failed to normalize hepatic glutathione concentration, and suggests that decreased gamma-glutamylcysteine ligase activity is primarily responsible for the decrease in hepatic glutathione levels during endotoxemia. Inhibition of nitric oxide synthesis prevented the endotoxin-induced changes in hepatic and plasma glutathione status and up-regulated liver glutathione and cysteine synthesis pathways at the level of gene expression. Furthermore. whereas the activity of glutathione peroxidase and glutathione S-transferase decreased during endotoxemia, both of these changes were prevented by inhibition of nitric oxide synthesis. In conclusion, increased nitric oxide synthesis during endotoxemia causes marked changes in glutathione flux and defenses against oxidative stress in the liver. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available