4.7 Article

The general circulation and robust relative humidity

Journal

JOURNAL OF CLIMATE
Volume 19, Issue 24, Pages 6278-6290

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI3979.1

Keywords

-

Ask authors/readers for more resources

The sensitivity of free-tropospheric relative humidity to cloud microphysics and dynamics is explored using a simple 2D humidity model and various configurations of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3 (CAM3) atmospheric general circulation model (AGCM). In one configuration the imposed surface temperatures and radiative perturbations effectively eliminated the Hadley and Walker circulations and the main westerly jet, creating instead a homogeneous boiling kettle world in low and midlatitudes. A similarly homogeneous state was created in the 2D model by rapid horizontal mixing. Relative humidity R simulated by the AGCM was insensitive to surface warming. Doubling a parameter governing cloud water reevaporation increased tropical mean R near the midtroposphere by about 4% with a realistic circulation, but by more than 10% in the horizontally homogeneous states. This was consistent in both models. AGCM microphysical sensitivity decreased in the upper troposphere, and vanished outside the Tropics. Convective organization by the general circulation evidently makes relative humidity much more robust to microphysical details by concentrating the rainfall in moist environments. Models that fail to capture this will overestimate the microphysical sensitivity of humidity. Based on these results, the uncertainty in the strength of the water vapor feedback associated with cloud microphysical processes seems unlikely to exceed a few percent. This does not include uncertainties associated with large-scale dynamics or cloud radiative effects, which cannot be quantified, although radical CAM3 circulation changes reported here had surprisingly little impact on simulated relative humidity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available