4.8 Article

HFE genotype, particulate air pollution, and heart rate variability -: A gene-environment interaction

Journal

CIRCULATION
Volume 114, Issue 25, Pages 2798-2805

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.106.643197

Keywords

air pollution; genes; epidemiology; nervous system, autonomic; metals

Funding

  1. NIEHS NIH HHS [ES00002, ES05257, ES10798, K23-ES00381, P01-ES009825, P42-ES05947, T32 ES07069] Funding Source: Medline

Ask authors/readers for more resources

Background - Particulate air pollution has been associated with cardiovascular mortality and morbidity. Transition metals such as iron bound to the particles may be responsible for those associations. The protein product of the hemochromatosis (HFE) gene modulates uptake of iron and divalent cations from pulmonary sources and reduces their toxicity. Two HFE polymorphisms (C282Y and H63D) associated with increased iron uptake may modify the effect of metal-rich particles on the cardiovascular system. Methods and Results - We investigated the association between particulate matter <= 2.5 mu m in aerodynamic diameter and heart rate variability in 518 older men from the Normative Aging Study who were examined between November 2000 and December 2004. Linear regression models were fit to evaluate interactions between HFE genotype and particulate matter <= 2.5 mu m in aerodynamic diameter in relation to heart rate variability, controlling for potential confounders. A 10-mu g/m(3) increase in particulate matter <= 2.5 mu m in aerodynamic diameter during the 48 hours before heart rate variability measurement was associated with a 31.7% (95% CI, 10.3% to 48.1%) decrease in the high-frequency component of heart rate variability in persons with the wild-type genotype, whereas no relationship in the high- frequency component was observed in persons with either HFE variant. The difference in effect of particulate matter <= 2.5 mu m in aerodynamic diameter on the high-frequency component between persons with and without HFE variants was significant (P for interaction = 0.02). Conclusions - The effect of particles on cardiac autonomic function was shielded in subjects with at least 1 copy of an HFE variant compared with wild- type subjects. Transition metals, including iron, bound to ambient particles and the related oxidative stress may play an important role in cardiac toxicity of particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available