4.6 Article

Testing a two-state model of nanoconfined liquids: Conformational equilibrium of ethylene glycol in amorphous silica pores

Journal

LANGMUIR
Volume 22, Issue 26, Pages 10919-10923

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la062285k

Keywords

-

Ask authors/readers for more resources

Molecular dynamics simulations of the conformational equilibrium of ethylene glycol in roughly cylindrical nanoscale amorphous silica pores are presented and analyzed in the context of a two-state model of confined liquids. This model assumes that an observable property of a confined liquid can be decomposed into a weighted average arising from two subensembles with distinct physical attributes: molecules at the surface and molecules in the interior of the pore. It is further assumed that the molecules in the interior exhibit behavior that is indistinguishable from that of the bulk liquid. However, the present simulation results are not consistent with this two-state model. Neither the assumption of two distinct subensembles nor the assumption that the interior molecules possess bulk-like behavior is supported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available