4.7 Article Proceedings Paper

Ultrasonic attenuation and microstructural evolution throughout tension-compression fatigue of a low-carbon steel

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.02.226

Keywords

electromagnetic acoustic resonance; low-carbon steel; fatigue damage; dislocation damping

Ask authors/readers for more resources

We have studied the microstructural evolution in a wrought low-carbon steel (ASTM-AI05), containing 0.21 mass% C and subjected to tension-compression cyclic loading, through in situ monitoring of the attenuation and velocity of a surface shear-wave with the electromagnetic acoustic resonance (EMAR) technique. This technique is a combination of the resonant technique and a non-contacting electromagnetic acoustic transducer (EMAT). The EMAT operates with a magnetostrictive mechanism and it is the key to establishing a non-contacting monitoring of microstructural change in a material's surface region with high sensitivity. The attenuation coefficient is sensitive to the accumulated fatigue damage, showing two peaks around 2% and 90% of life. This novel phenomenon is interpreted in terms of dislocation mobility change and dislocation rearrangement. Transmission electron microscope (TEM) observation has supported this view. This technique has a potential to assess damage and predict the fatigue life of steels. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available