4.6 Article

Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 39, Issue 24, Pages 5294-5299

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/39/24/029

Keywords

-

Ask authors/readers for more resources

The underlying domain structures of ferroelastic ceramics have a large influence on their macroscopic electromechanical properties. The profile shape functions of certain pseudo-cubic peaks in diffraction patterns collected from these materials can provide a great deal of information about such domain structures. Using both constant-wavelength neutron and high-energy synchrotron x-ray diffraction, profile shape functions of the pseudo-cubic 002 reflection are evaluated in a soft, tetragonal PZT ceramic. Errors in the integrated intensity ratio, important for measuring the degree of domain boundary movement in these materials, are subject to further scrutiny. It is shown that an asymmetric Pearson VII type distribution, integrated numerically between reasonable limits, gives the most accurate value of relative domain populations in these materials. It is also shown that the diffuse scattering caused by ferroelastic domain walls may be used to estimate the amount of material that is affected by microstrains originating at these walls.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available