4.6 Article

Conformational heterogeneity and low-frequency vibrational modes of proteins

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 8, Issue 47, Pages 5543-5548

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b610075a

Keywords

-

Ask authors/readers for more resources

Molecular dynamics simulation and normal mode analysis are used to calculate the vibrational density of states of dihydrofolate reductase complexed with nicotinamide adenine dinucleotide phosphate at 120 K and the results are compared with the experimental spectrum derived from inelastic neutron scattering. The simulation results indicate that the experimental spectrum arises from an average over proteins trapped in different conformations with structural differences mainly in the loop regions, and that these conformations have significantly different low-frequency (< 20 cm(-1)) spectra. Thus, the experimentally measured spectrum is an average over the vibrational modes of different protein conformations and is thus inhomogeneously broadened. The implications of this broadening for future neutron scattering experiments and ligand binding calculations are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available