4.7 Article

Copper(II) complexes of salen analogues with two differently substituted (push-pull) salicylaldehyde moieties. A study on the modulation of electronic asymmetry and nonlinear optical properties

Journal

INORGANIC CHEMISTRY
Volume 45, Issue 26, Pages 10976-10989

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic0613513

Keywords

-

Ask authors/readers for more resources

This paper presents some copper(II) complexes of salen analogues in which the two salicylaldehyde moieties carry different (electron donor, D, and acceptor, A) substituents in position 5, producing a push-pull charge asymmetry. The X-ray structures of some compounds show the presence of pairs of stacked molecules with head-to-tail intermolecular associations. The geometries of all complexes have been optimized through density functional theory (DFT) studies, which have shown that a major influence on the coordination bond lengths is given by the presence of the electron acceptor NO2 group. Such an influence operates mainly on the Cu-phenolato bonds: elongation of the Cu-O distance of the 5-nitrosalicylaldehyde moiety, with a concomitant decrease of the other Cu-O distance; the Cu-N bonds are less affected. The D groups have only a minor influence. The nonlinear optical responses, mu(g)beta(vec), of some molecules have been determined by EFISH measurements, and the beta(vec) values have been obtained using the DFT-calculated mu(g) values because solubility problems hampered the experimental measurements of mu(g) of some derivatives; the former, however, have been found to be in agreement with the experimental values that could be obtained. Deconvolution of the absorption bands in the near-UV region has allowed recognition of the charge-transfer (CT) transition, assigned to a ligand-to-metal CT (LMCT) by time-dependent DFT computations; we have then used the solvatochromism of this transition to obtain beta(0) and beta(CT) values using the two-state model. These values were compared with those obtained by computational studies, which have also allowed evaluation of the influence of the substituents on the directions of mu(g) and beta(tot).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available