4.8 Article

Phase-selective synthesis of copper sulfide nanocrystals

Journal

CHEMISTRY OF MATERIALS
Volume 18, Issue 26, Pages 6170-6177

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm061686i

Keywords

-

Ask authors/readers for more resources

Monodispersed copper sulfide nanocrystals were synthesized via the decomposition of an air-stable precursor, copper (I) thiobenzoate (CuTB), in the presence of dodecanethiol (DDT). We discover that, by varying the stabilizing agent used (trioctylphosphine or tributylphosphite), we can selectively generate phase-pure roxbyite nanoplates (Cu1.75S) or chalcocite faceted nanocrystals (Cu2S). We also demonstrate that, under suitable conditions, the roxbyite nanoplates can be forced to grow only in two dimensions, with an aspect ratio (diameter/thickness) tunable between 2.3 and 4.1. To the best of our knowledge, this is the first report for making nanocrystalline copper sulfide with such aspect ratio tunability. Temperature and the [DDT]/[CuTB] ratio were identified to be the important factors for controlling the size of the nanocrystals. To gain more insight to the mechanisms of phase-selective control, we attempted a series of controlled experiments and DFT calculations. It appears that the precursor can undergo two competitive pathways, leading to seeds, and thus the growth, of different crystal phases. This work thus demonstrates a general approach to phase-selective nanocrystals engineering whereby the kinetics of decomposition of a chosen precursor is readily manipulated using activating or stabilizing agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available