4.7 Article

The proarrhythmic antihistaminic drug terfenadine increases spontaneous calcium release in human atrial myocytes

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 553, Issue 1-3, Pages 215-221

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2006.09.023

Keywords

sarcoplasmic reticulum; L-type calcium current; Na-Ca exchange; arrhythmogenesis; cardiac electrophysiology

Ask authors/readers for more resources

Spontaneous calcium release from the sarcoplasmic reticulum in cardiac myocytes plays a central role in cardiac arrhythmogenesis. Compounds intended for therapeutical use that interfere with intracellular calcium handling may therefore have an undesired proarrhythmic potential. Here we have used isolated human atrial myocytes to compare the effect of the proarrhythmic antihistaminic drug terfenadine with the non-proarrhythmic antihistaminic drugs fexofenadine and rupatadine on intracellular calcium homeostasis. Perforated patch-clamp technique was used to measure ionic currents and to detect spontaneous calcium release from the sarcoplasmic reticulum. Our results show that the compound terfenadine, with known arrhythmogenic effects, inhibits L-type calcium current (I-Ca) with an IC50 of 185 nM when cells are stimulated at 1.0 Hz. The inhibitory effect of 0.3 mu M terfenadine increased from 19 4% at stimulation frequency of 0.2 Hz to 63 +/- 6% at 2.0 Hz. Moreover, terfenadine also increased spontaneous calcium release from the sarcoplasmic reticulum. At a concentration of 1 mu M, terfenadine significantly increased the spontaneous Na-Ca exchange current (I-NCX) frequency from 0.48 +/- 0.25 to 1.93 +/- 0.67 s(-1). In contrast, fexofenadine and rupatadine did not change I-Ca or the frequency of spontaneous I-NCX. We conclude that the proarrhythmic antihistaminic drug terfenadine alters intracellular calcium handling in isolated human atrial myocytes. This experimental model may be suitable to screen for potential arrhythmogenic side-effects of compounds intended for therapeutical use. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available