4.6 Article

Coincidence of actin filaments and talin is required to activate vinculin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 52, Pages 40389-40398

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M607324200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM41605] Funding Source: Medline

Ask authors/readers for more resources

Vinculin regulates cell adhesion by strengthening contacts between extracellular matrix and the cytoskeleton. Binding of the integrin ligand, talin, to the head domain of vinculin and F-actin to its tail domain is a potential mechanism for this function, but vinculin is autoinhibited by intramolecular interactions between its head and tail domain and must be activated to bind talin and actin. Because autoinhibition of vinculin occurs by synergism between two head and tail interfaces, one hypothesis is that activation could occur by two ligands that coordinately disrupt both interfaces. To test this idea we use a fluorescence resonance energy transfer probe that reports directly on activation of vinculin. Neither talin rod, VBS3 ( a talin peptide that mimics a postulated activated state of talin), nor F-actin alone can activate vinculin. But in the presence of F-actin either talin rod or VBS3 induces dose-dependent activation of vinculin. The activation data are supported by solution phase binding studies, which show that talin rod or VBS3 fails to bind vinculin, whereas the same two ligands bind tightly to vinculin head domain ( Kd similar to 100 nM). These data strongly support a combinatorial mechanism of vinculin activation; moreover, they are inconsistent with a model in which talin or activated talin is sufficient to activate vinculin. Combinatorial activation implies that at cell adhesion sites vinculin is a coincidence detector awaiting simultaneous signals from talin and actin polymerization to unleash its scaffolding activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available