4.7 Article

Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 210, Issue 1, Pages 26-37

Publisher

WILEY
DOI: 10.1002/jcp.20841

Keywords

-

Funding

  1. NIAMS NIH HHS [AR048892] Funding Source: Medline

Ask authors/readers for more resources

Our laboratory previously showed that osteoactivin (OA) is a novel, osteoblast-related glycoprotein that plays a role in osteoblast differentiation and function. The purpose of this study was to examine the regulation of OA expression by BMP-2 and the role OA plays as a downstream mediator of BMP-2 effects in osteoblast function. Using primary osteoblast cultures, we tested different doses of BMP-2 on the regulation of OA expression during osteoblast development. To test whether Smad-1 signaling is responsible for BMP-2 regulation of OA expression, osteoblast cultures were transfected with Smad1 siRNA, treated with 50 ng/ml of BMP-2 and analyzed by Western blot. BMP-2 treatment increased OA mRNA and protein expression in a dose-dependent manner and this upregulation was blocked in Smad1 siRNA transfected cultures. We next examined whether the role of OA as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Osteoblast cultures were transfected with OA antisense oligonucleotides and treated with 50 ng/ml of BMP-2. Cultures transfected with OA antisense oligonucleotides and treated with BMP-2 showed a reduction of OA expression associated with a significant reduction in early and late differentiation markers induced by BMP-2. Therefore, OA acts, at least in part, as a downstream mediator of BMP-2 effects on osteoblast differentiation and matrix mineralization. Our findings suggest that BMP-2 regulates OA expression through the Smad1 signaling pathway. Our data also emphasize that OA protein acts as a downstream mediator of BMP-2 effects on osteoblast differentiation and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available